Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N. Srinivasan,^a B. Sridhar^b and R. K. Rajaram^{b*}

^aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and ^bDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.119 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(DL-phenylalaninium) sulfate monohydrate

The crystal structure of the title compound, $2C_9H_{12}NO_2^+$.-SO4²⁻·H₂O, consists of two protonated phenylalaninium cations linked together by hydrogen bonding with the water molecule and the sulfate anion. The aggregation of the hydrophobic zone is along $(10\overline{1})$ and of the hydrophilic zone is along $(20\overline{2})$. The phenylalaninium molecules show sterically least favourable g+ or g- conformations.

Comment

The crystal structures of amino acids and their complexes have provided a wealth of interesting features pertaining to their patterns of aggregation and their ionic interactions (Vijayan, 1988; Prasad & Vijayan, 1993). The crystal structures of Lphenylalanine hydrochloride (Gurskaya & Vainshtein, 1963; Al-Karaghouli & Koetzle, 1975), L-phenylalanine L-phenylalaninium formate (Görbitz & Etter, 1992), bis(L-phenylalanine) nitrate (Srikrishnan et al., 1984), bis(L-phenylalanine) sulfate monohydrate (Nagashima et al., 1992), L-phenylalanine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997) have been reported. In the present study, the structure of DLphenylalaninium sulfate monohydrate, (I), has been investigated (Fig. 1 and Table 1).

The asymmetric unit of (I) contains two crystallographically independent protonated phenylalaninium units (molecules A and B), one sulfate ion and a water molecule. The two phenylalaninium molecules A and B adopt sterically least favourable g+ and g- conformations (Benedetti et al., 1983; Suresh *et al.*, 1994) with χ^1 values of 56.2 (3) and -58.1 (3)°, respectively. There are striking similarities with L-phenylalnine L-phenylalaninium formate (Görbitz & Etter, 1992).

A chelated bifurcated hydrogen bond is observed in the case of (i) the amino N atom of molecule A with sulfate O atoms O1 and O4 and (ii) the amino N atom of molecule B with the sulfate O4 atom and the carboxyl O2A atom (Jeffrey

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 12 June 2001 Accepted 19 July 2001 Online 27 July 2001

 $w = 1/[\sigma^2(F_o^2) + (0.0530P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 1.5922P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Figure 1

The molecular structure of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

& Saenger, 1991). The O4 atom of the sulfate anion acts as acceptor in hydrogen bonding with the water molecule and the amino N atom of molecules A and B. Interestingly, phenylalaninium molecule A forms a hydrogen bond with the sulfate anion only, while molecule B is hydrogen bonded to the sulfate anion, a carboxyl O atom and the water O atom. The sulfate anion links the phenylalaninium molecules into chains running along the b axis through hydrogen bonds with (i) the amino N atom of molecule A and (ii) the amino N and carboxyl O atoms of molecule B. The packing arrangement leads to the formation of a hydrophobic zone of phenyl rings along $(10\overline{1})$ and a hydrophilic zone along $(20\overline{2})$ (Fig. 2).

Figure 2

Packing of the molecules viewed down the b axis.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.119$ S = 1.05 3671 reflections 281 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1A-C11	1.201 (3)	O2A-C21	1.183 (3)
O1B-C11	1.307 (3)	O2B-C21	1.316 (3)
O1A-C11-C12-N11	0.8 (3)	O2A-C21-C22-N21	-18.5(4)
N11-C12-C13-C14	56.2 (3)	N21-C22-C23-C24	-58.1(3)
C11-C12-C13-C14	177.2 (2)	C21-C22-C23-C24	-176.9(2)
C12-C13-C14-C15	60.9 (4)	C22-C23-C24-C25	-70.0(3)
O1 <i>B</i> -C11 O1 <i>A</i> -C11-C12-N11 N11-C12-C13-C14 C11-C12-C13-C14 C12-C13-C14-C15	1.307 (3) 0.8 (3) 56.2 (3) 177.2 (2) 60.9 (4)	O2B-C21 O2A-C21-C22-N21 N21-C22-C23-C24 C21-C22-C23-C24 C22-C23-C24-C25	1.310 -18.5 -58.1 -176.9 -70.0

Experimental

The title compound, (I), was crystallized from an aqueous solution of DL-phenylalanine and sulfuric acid by slow evaporation.

Crystal data

 $\begin{array}{l} 2\text{C}_9\text{H}_{12}\text{NO}_2^+\cdot\text{O}_4\text{S}^{2-}\cdot\text{H}_2\text{O}\\ M_r = 446.47\\ \text{Monoclinic, } P2_1/n\\ a = 14.560 \ (2) \text{ Å}\\ b = 6.6000 \ (12) \text{ Å}\\ c = 22.115 \ (4) \text{ Å}\\ \beta = 90.70 \ (2)^\circ\\ V = 2124.9 \ (6) \text{ Å}^3\\ Z = 4\\ D_x = 1.396 \ \text{Mg m}^{-3}\\ D_m = 1.39 \ \text{Mg m}^{-3} \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer ω –2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.951$, $T_{\rm max} = 0.980$ 3825 measured reflections 3671 independent reflections 2806 reflections with $I > 2\sigma(I)$ D_m measured by flotation in a mixture of bromoform and xylene Mo Kα radiation Cell parameters from 25 reflections $\theta = 8.0-15.8^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 293 (2) K Needle, colorless 0.4 × 0.2 × 0.1 mm

 $\begin{aligned} R_{\rm int} &= 0.021\\ \theta_{\rm max} &= 25.0^\circ\\ h &= 0 \rightarrow 17\\ k &= 0 \rightarrow 7\\ l &= -26 \rightarrow 26\\ 25 \text{ standard reflections}\\ \text{every 3 reflections}\\ \text{frequency: 60 min}\\ \text{intensity decay: none} \end{aligned}$

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1 <i>B</i> −H1 <i>B</i> ····O1	0.82	1.80	2.614 (2)	170
$O2B - H2B \cdot \cdot \cdot O2^{i}$	0.82	1.77	2.575 (3)	168
N11-H11 A ···O2 ⁱⁱ	0.89	2.49	2.992 (3)	116
$N11 - H11B \cdots O3^{ii}$	0.89	2.09	2.884 (3)	148
$N11-H11C\cdots O1^{iii}$	0.89	1.97	2.831 (3)	163
$N11 - H11C \cdot \cdot \cdot O4^{iii}$	0.89	2.56	3.170 (3)	126
N21-H21 A ···O W^{iv}	0.89	2.01	2.836 (3)	154
$N21 - H21C \cdot \cdot \cdot O4^{v}$	0.89	2.05	2.843 (3)	147
N21-H21 C ···O2 A^{vi}	0.89	2.33	2.826 (3)	115
N21-H21 B ···O3 ^{vii}	0.89	1.97	2.797 (3)	154
OW−H1···O4 ⁱⁱⁱ	0.92(2)	2.00(2)	2.904 (3)	165 (4)
$OW-H2\cdots O1A$	0.90 (2)	2.54 (3)	3.295 (3)	142 (3)
Symmetry codes: (i) -	-x, -y, -z; (ii) $1 - x, -y, -$	z; (iii) $1 - x, 1$	1 - y, -z; (iv)

 $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z; (v) - x, 1 - y, -z; (vi) - \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z; (vii) x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z.$

The H atoms of the water molecule were located and refined using *DFIX*. All other H atoms were fixed by *HFIX* and allowed to ride on the parent atom.

organic papers

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999).

BS and RKR thank the Department of Science and Technology (DST), Government of India, for financial support.

References

- Al-Karaghouli, A. R. & Koetzle, T. F. (1975). Acta Cryst. B31, 2461–2465.
- Benedetti, E., Morelli, G., Nemethy, G. & Scheraga, R. (1983). Int. J. Pept. Protein Res. 22, 1–15.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Görbitz, C. H. & Etter, M. C. (1992). Acta Cryst. C48, 1317-1320.
- Gurskaya, G. V. & Vainshtein, B. K. (1963). Sov. Phys. Crystallogr. 8, 288-291.

- Jeffrey, G. A. & Saenger, W. (1991). In *Hydrogen Bonding in Biological Structures*. Berlin, Heidelberg, New York: Springer-Verlag.
- Johnson, C. K. (1976). *ORTEP*II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nagashima, N., Sano, C., Kawakita, T. & Iitaka, Y. (1992). Anal. Sci. 8, 723-725.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Prasad, G. S. & Vijayan, M. (1993). Acta Cryst. B49, 348-356.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON for Windows*. Utrecht University, The Netherlands.
- Srikrishnan, T., Narasinga Rao, S. & Parthasarthy, R. (1984). Acta Cryst. A40, C-92.
- Srinivasan, N. & Rajaram, R. K. (1997). Acta Cryst. C53, 1711-1713.
- Suresh, S., Prasad, G. S. & Vijayan, M. (1994). Int. J. Pept. Protein Res. 43, 139– 145.
- Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.